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The integration of computing and communication capabilities into the power grid has led to vulnerabil-
ities enabling attackers to launch cyberattacks on the grid. The resources that can be deployed to protect
a power grid are limited, rendering the need to impose preferences and priorities in optimal resource allo-
cation. Due to the complexity of modern power grids, exploitation of machine learning is desired for
developing optimal preferential cybersecurity defense strategies, where choosing a suitable mathemati-
cal framework to describe preference satisfaction and articulating a specific machine-learning method are
key. We develop a reinforcement-learning approach with the objective of satisfying the preferences as
quantitatively described by linear temporal logic. To characterize the preferences, we exploit a probabilis-
tic planning approach that transforms preference satisfaction into a mixed-integer programming (MIP)
problem, incorporate MIP into the resource-allocation problem, and use reinforcement learning to obtain
the optimal policy. Due to the time-varying nature of the problem, the transformation needs to be car-
ried out and MIP is to be solved at each time step. Utilizing the benchmark W&W 6-bus power-grid
network, we validate our preferential machine-learning framework to defend the system against attacks
under limited resources. Although our framework is computationally intensive at the present, it provides
a stepping stone toward developing more efficient machine-learning frameworks to preferentially defend
large cyberphysical systems.
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I. INTRODUCTION

To meet the ever-growing need for reliable and clean
energies, smart power grids incorporating a variety of
renewable power sources into the existing electrical infras-
tructure have become widespread. The increasing com-
plexity of smart grids renders necessary the deployment
of cyber control and communications, making the grids
a major class of cyberphysical systems. A smart grid
aims not only to increase electricity generation but also
to deliver enhanced transmission and distribution capabil-
ities [1]. To meet the future demand, the U.S. Department
of Energy (DOE) has identified seven principal character-
istics for smart grids: anticipating and responding to sys-
tem disturbances, optimization of asset utilization, power
quality for digital economy, enabling new products and
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services, accommodation of all generations, consumer par-
ticipation, and attack and natural-disaster resilience [2].
Underlying the day-to-day operation and functionality of
the grid is a vastly complex network of cyber infrastruc-
ture composed of layers of computers and communica-
tion systems, which constitute the “hidden” backbone of
power-system operations.

The integration of computing and communication capa-
bilities into the power grid has led to numerous vulnerabil-
ities. Cyber capabilities open doors for attackers to access
a power grid and cause disruptions to the normal operation
of the grid [3,4], which are commonly referred to as cyber-
attacks. The major blackouts of 2003 on the U.S.-Canadian
border [5], the 2015 Ukraine blackout [6], and Stuxnet
in 2010 [7] were caused by cyberattacks. The three key
subsystems of a power grid are generation, transmission,
and distribution. Among them, the transmission subsystem
consists of widely distributed substations and high-voltage
pylons and is therefore most vulnerable as it is more sus-
ceptible to attacks than the other two subsystems [8]. In
accordance with the DOE criteria of asset optimization
and attack resilience, it is critical to allocate optimal (but
finite) resources to protecting the transmission lines against
cyberattacks.
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In the real world, the defenders usually have incomplete
or no knowledge of the attacker’s strategies and resources.
Yet, it is possible to make certain assumptions or estimates
based on available information and historical data. In prac-
tice, the determination of the attack preferences can be
approached through various methods, such as analyzing
the past cyberattacks, considering known attack patterns
or strategies, and leveraging expertise from cybersecu-
rity professionals. An example is the Stuxnet cyberattack
[7]. In 2010, Stuxnet, a sophisticated malware program,
targeted Iran’s nuclear facilities. This attack specifically
focused on compromising industrial control systems, such
as programmable logic controllers (PLCs), with the aim of
sabotaging the centrifuges used for uranium enrichment.
The attack demonstrated a clear preference for targeting
specific components and exploiting vulnerabilities unique
to the targeted infrastructure. In addition to known attacks
such as Stuxnet, the determination of attack preferences
can also leverage broader trends and patterns observed in
the landscape of cyber threats. For example, there is a
recurring preference among attackers to exploit common
vulnerabilities in widely used software or to target high-
value assets, such as financial institutions or critical infras-
tructure systems. By considering these historical trends
and common attacker objectives, defenders can develop
proactive defense strategies that prioritize the protection
of critical assets and vulnerabilities commonly targeted by
attackers. However, it is important to note that the determi-
nation of attack preferences is always an ongoing challenge
and that the evolving nature of cyber threats requires con-
stant adaptation. While real-world examples such as the
Stuxnet attack provide valuable insights, each attack is
unique and attackers can change their strategies over time.
Continuous monitoring, threat-intelligence sharing, and
collaboration among cybersecurity professionals remain
crucial to staying updated on emerging attack techniques
and preferences.

In this paper, we address the problem of allocating
finite resources for preferential defense of power grids
quantitatively through machine learning. To accomplish
this, there are two prerequisites: choosing a suitable math-
ematical framework to describe preference satisfaction
and articulating a specific machine-learning method. Our
respective solutions are linear temporal logic (LTL) and
reinforcement learning (RL), explained as follows.

In a real situation, the deployable resources are limited
and it is not possible to protect all transmission lines in the
grid. As a result, preference becomes an important factor
of consideration in the articulation of defense strategies. In
fact, preferences are generally one of the most important
factors in human decision making. For example, in a prob-
lem consisting of a number of tasks, it is likely that not all
the task goals can be achieved simultaneously and it is nec-
essary to assign preferences to certain tasks. Under limited
resources, preference-based planning is of fundamental

importance to the security of cyberphysical systems. Math-
ematically, a decision-theoretic planning problem can be
formulated as a Markov decision process (MDP), with
the objective of obtaining an optimal policy to achieve
maximum-preference satisfaction [9]. Generally, in the
power-grid industry, decision making frequently entails
bringing about compromises between conflicting priori-
ties and preferences. The operators of the power grid, for
instance, must strike a trade-off between the requirement
to give customers access to dependable electricity and the
need to do so at the lowest feasible cost. A previous tech-
nique for assessing options based on many criteria, termed
multicriterion decision analysis (MCDA) [10], is effective
for making decisions in this situation. For power grids,
the analysis entails assessing potential power-generating
technologies or operational approaches considering factors
such as cost, dependability, and environmental impact. In
the power-grid industry, decision making needs to be car-
ried out with incomplete or uncertain information, as the
operators must make decisions in real time based on often
noisy and incomplete data.

In view of the uncertainties, the key to effective decision
making in the power-grid industry is to carefully weigh
the trade-offs among competing objectives and to use a
systematic approach to evaluate and compare options and
preferences. In this regard, LTL stands out as an effective
task-specification language [11]. In particular, LTL can be
exploited as a quantitative tool to bridge the task specifi-
cation designed by the user with the designated objectives
of the problem. Previously, optimal control for a system
subject to LTL constraints has been studied [12]. It has
also been used to design a system that maximally real-
izes its partial specifications [13]. In addition, achieving
the maximum satisfaction of a given LTL formula while
minimizing the steady-state average cost in a Markovian
optimal control setting has been investigated [14,15] and a
similar approach has been used to develop a transient anal-
ysis to find a policy that minimizes the accumulated cost on
a finite horizon [16]. We note that a necessary step toward
realizing preferential defense of a cyberphysical system is
to find an optimal allocation policy for a fixed amount of
resources to achieve a predetermined goal—the resource-
allocation problem. A previous solution has been based on
negotiation theory [17]. The problem has also been stud-
ied in the field of cybersecurity [18]. Alternative solution
approaches include game theory [19,20] and MDP [21].

The dynamics of a power grid are generally nonlin-
ear. Another complication is the occurrence of cascading
failures [22] in power grids. Because of the complex-
ity, RL—which is a branch of artificial intelligence that
enables a dynamical system to learn from experiences
gathered from interacting with its environment—stands
out as a viable strategy to solve the preferential cyber-
defense problem for power grids. As a main derivative of
machine learning, RL has proven to be useful for solving
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cybersecurity problems. There have been numerous studies
using RL to solve smart-grid cybersecurity problems, such
as in false-data-injection attacks [23], topology attacks [24,
25], attack mitigation [26–28], attack detection [29,30],
and persistent attacks [31]. Traditionally, RL dealt with
problems in which the state-action space was small and
could be tabulated—the so-called Q function or Q table.
However, when the state-action space is large, as in typi-
cal smart grids, the Q-table approach is not viable. In this
case, neural networks can be used in RL to approximate
the Q function, leading to deep Q learning [32,33]. In the
field of smart-grid security, deep RL has been implemented
[25,26,28,30]. LTL formulas as task-specification tools
have been transferred into the RL framework [34]. Mul-
tiagent RL with LTL specifications has also been studied
[35]. In robotics, the complex rules that the robot should
follow have been articulated using temporal logic and an
RL algorithm has been developed to learn tasks expressed
as truncated LTL formulas [36]. Algorithms combining RL
and LTL have also been widely studied in control engineer-
ing. For example, synthesizing the controller required to
produce a specified closed-loop response given the model
of a feedback loop has been achieved using combined RL
and LTL [37–39].

The main challenge associated with the resource-
allocation problem in cybersecurity of power grids lies in
allocating limited resources, such as budget and person-
nel, to different security measures in order to protect the
grid from potential cyberattacks. The problem is extraor-
dinarily complex because of the many different types of
potential threats to the grid, each requiring a different set
of resources for effective mitigation. In this paper, we
solve the optimal resource-allocation problem by devel-
oping optimal preferential cybersecurity defense strategies
for cyberphysical systems, using power grids as a con-
crete setting. In the case of limited resources in terms of,
e.g., funding, available security guards, or security cam-
eras, realizing optimal resource allocation while taking into
account the user preferences is of the utmost importance.
Consider the power grid in Fig. 1 and assume that the gov-
ernment has some preferences based on the cultural and
political attributes of the cities represented. For example,
when an attack occurs, a blackout in cities A and B may be
preferred to a blackout in cities B and C. The question is
how to allocate the available resources to defend the trans-
mission lines so that the preference is maximally satisfied.
We articulate an RL approach with the objective of satis-
fying the preferences specified by the LTL formulas. To
model the preference problem, we exploit the probabilistic
planning approach [40], which transforms preference satis-
faction into a mixed-integer programming (MIP) problem.
Due to the time variations, the transformation needs to be
carried out at each time step to enable a new MIP prob-
lem to be formulated. Once MIP is incorporated into the
resource-allocation problem, RL can be executed to obtain
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FIG. 1. A representation of a power grid, modeled as the
W&W 6-bus system. The system has six buses, three generators
(denoted as “Gen”), three loads (here depicted as cities), and 11
transmission lines. The simulation of the power grid is performed
using the DCSIMSEP software package, a simulator of cascading
failures in power systems. DCSIMSEP does not use any specific
stress-mitigating controls under the assumption that the cascades
propagate too fast for the operators to react, so it is suitable for
cybersecurity problems.

the optimal policy, at each time step. The result is a kind
of adaptivity: the optimal policy needs to be varied from
time to time to offer the best protection of the power grid
subject to preference satisfaction.

In Sec. II, we quantify preferences using temporal logic
formulas, formulate the resource-allocation problem for
preferential cybersecurity defense, and articulate an RL
approach to the optimal solution. The results are presented
in Sec. III and a discussion is offered in Sec. IV.

II. MIXED-INTEGER PROGRAMMING
FORMULATION OF PREFERENCE AND

REINFORCEMENT LEARNING

Temporal logic is a type of formal logic that can be used
to reason about events and their relationships over time. In
the context of power grids, temporal logic can be used to
model and analyze the dynamic behavior of the grid over
time. This can be useful for tasks such as verifying the cor-
rectness of the control systems, predicting the behavior of
the grid under different scenarios, and identifying potential
vulnerabilities or weaknesses in the design of the grid. Sev-
eral different formal methods for temporal logic exist, each
with its own syntax and semantics for representing and rea-
soning about time. Some common examples include LTL
and computation-tree logic (CTL). These methods can be
used to express statements about the behavior of the power
grid over time, such as “the power grid will always remain
stable” or “the power grid will eventually reach a state
where demand is equal to supply,” etc. These statements
can then be evaluated using automated theorem-proving or
model-checking techniques to determine whether they are
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true or false. Overall, temporal logic is an effective tool for
describing the dynamic evolution of the power grid and
can be used to improve the reliability and robustness of the
grid. In this section, we introduce the concept of the finite
automaton and illustrate, by using an example, how prefer-
ences can be quantified by the LTL formulas. Based on the
constraints from the LTL formulas, we demonstrate that
the preferential cyber-defense problem can be formulated
as an MIP problem.

A. Quantifying preferences with LTL formulas

A deterministic finite automaton (DFA) is a finite-state
machine that accepts or rejects a given string of sym-
bols by running through a state sequence deterministically
specified by the string [41,42]. Based on DFA, prefer-
ences over accepting conditions can be modeled [40]. A
DFA is a 5-tuple 〈S̃, �, δ, s̃0, φ〉, where S̃ represents the
set of automaton states, � is the set of possible automa-
ton symbols or actions, δ is the transition function, s̃0 is
the initial automaton state, and φ represents the preference
formula(s). To incorporate preferences into an MDP, we
define the preference-induced MDP, which is a 4-tuple,
〈S̃ × S, A, d, �〉, where S denotes the set of MDP states,
A is the set of MDP actions, and d is the probability of
the initial state distribution. The transition function � is
defined as

�((s̃′, s′)|(s̃, s), a) = P(s′|s, a) ∗ 1{s̃′}{δ(L(s′), s̃)}, (1)

which means that from MDP state s and automaton state
s̃, under action a, the probability of going into MDP state
s′ and automaton state s̃′ is equal to the sum of the prob-
abilities of going into MDP state s′ from MDP state s,
taking action a for all possible transitions. In Eq. (1), L
is the labeling function that maps MDP states to their
corresponding automaton actions.

To explain the definition in Eq. (1), we consider a con-
crete example of a power grid to describe the preferences
from the attacker’s perspective [40]: the W&W 6-bus sys-
tem—denoted as Example 1. As illustrated in Fig. 1), this
benchmark power grid consists of three generators, each
susceptible to attacks. Assume that the attacker can attack
the generators in any order. Considering different uncer-
tainties such as the available attack window, the defender’s
capabilities, and the generation cost, the attacker can spec-
ify the following possible policies as preferences (ordered
by priority):

(i) PA: the more generators being attacked, the better.
(ii) PB: if attacking all generators is possible, attacking

Gen 3 in the end is preferred.
(iii) PC: attacking Gen 1 first is preferred to attacking

other generators first.
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Gen 2Gen 3
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Gen 1
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FIG. 2. An illustration of an automation of preferences. For
Example 1 described in the text, the automation comprises eight
states, with no. 0 being the starting state and no. 7 being the
final state. For preference PA, from the attacker’s point of view,
attacking three generators is preferred to attacking two genera-
tors, which in turn is preferred to attacking only one generator.
Similarly, attacking one generator is preferred to attacking no
generators. The preference can be described by the formula {7} �
{4, 5, 6} � {1, 2, 3} � {0}. The same logic applies to preference
PC. Since the automaton is not able to describe preference PB,
an improvised automaton is constructed, as shown in Fig. 3.

The resulting automaton is illustrated in Fig. 2. Note that
the constructed standard automaton has eight states, where
PA and PC can be implemented as the following preference
formulas:

(i) {7} � {4, 5, 6} � {1, 2, 3} � {0}
(ii) {1} � {2, 3}

To derive the preference formulas for PB, the automaton
in Fig. 2 cannot be used, because the states ending with
attacking Gen 3 are not distinguishable from the states
ending with attacking the other generators. Modifying the
automaton to the one in Fig. 3 and adding an extra automa-
ton state allows us to express the preference PB explicitly
as

(i) φ1 : {8} � {7} � {4, 5, 6} � {1, 2, 3} � {0}
(ii) φ2 : {1} � {2, 3}
More specifically, for the example considered, we have

the following:

(i) S̃ = {0, 1, . . . , 8} is the set of automaton states.
(ii) S = {[s1, s2, s3]}, where si is a binary variable, which

is 0 if Gen i is attacked, and S is the set of MDP
states. (As will be demonstrated in Sec. III, nat-
ural numbers can be used instead of vectors for
representing the MDP states, for convenience.) The
transformation follows the conversion of the logi-
cal bit-wise inverse of the state, which is binary to
its decimal counterpart. For example, the states s =
[1, 1, 1], s = [0, 0, 0], and s = [0, 0, 1] are equiva-
lent to nos. 0, 7, and 6, respectively. (In Sec. III, S is
the set representing the condition of the transmission
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FIG. 3. A modified automaton of Example 1. There are now
nine states, with no. 0 being the starting state and nos. 7 and 8
being the final states. Since the automaton in Fig. 2 is not able to
describe preference PB, an improvised automaton is constructed.
Preference PB stipulates that, from the attacker’s point of view,
attacking Gen 3 in the end is preferred to attacking other gen-
erators if attacking all generators is possible. Using the refined
automaton, this preference can be described by adding state no.
8 to the formula illustrated in Fig. 2: {8} � {7} � {4, 5, 6} �
{1, 2, 3} � {0}.

lines following the same binary logic as is used
here.)

(iii) � = A = {Gen 1, Gen 2, Gen 3} is the set consist-
ing of the automaton and MDP actions, where � is
usually called the alphabet in the theory of automata
[41,42].

(iv) The transition function δ is represented by the graph
in Fig. 3.

(v) s̃0 = {0} is the set containing the initial state(s) of
the automaton.

Transforming preferences into temporal logic formulas in
the form {P} � {P′} enables us to formulate an MIP prob-
lem to find an optimal policy to maximally satisfy the
preferences.

B. Maximum-preference satisfaction as a
mixed-integer programming problem

In an MIP problem [43], some variables of the system to
be optimized are integers with a linear objective function,
subject to linear constraints. In our work, the objective
function is the preference-satisfaction value and there are
two sets of constraints: one representing the preference-
satisfaction value while the other denotes the preferences
defined by the user.

The definition of the value of the preference satisfaction
(VPS) is closely related to the probability of occurrence of
the corresponding preference, where VPS for a preference
formula X0 � X1 � · · · � Xn is defined as [40] P(Xi) if
there exists some i such that P(Xi) ≥ P(Xi−1), while for all
k ≥ i, P(Xk) < P(Xk−1) holds and is zero otherwise. The
definition of VPS can be illustrated using the example dis-
cussed in Sec. II A. Assume that for the preference formula

TABLE I. The probability of the automaton ending in specific
states for two policies in Example 1.

Automaton state set Pπ1 Pπ2

{8} 0.05 0.8
{7} 0.15 0.05
{4, 5, 6} 0.5 0
{1, 2, 3} 0.1 0.05
{0} 0.2 0.1

φ1, the two derived policy samples induce the probabilities
as listed in Table I. From the definition of VPS, policy π1
satisfies the preference φ1 by 50%, whereas policy π2 sat-
isfies the preference φ1 by 80%. This problem is denoted
as Example 2.

To obtain the constraints for the MIP problem, we
employ a supporting variable y(t, (s̃, s), a), defined as the
probability of visiting the state pair (s̃, s) at time t and
taking action a, so that y(T, P) is the probability of the
automaton being at state P at time t = T (regarded as the
ending point). Using the supporting variable and from the
definition of VPS for the preference formula, we have the
first set of MIP constraints {P} � {P′} as [40]

0 ≤ VPS ≤ B, (2)

B − 1 ≤ VPS − y(T, P′) ≤ 0, (3)

B(1 + ε) + 1 ≤ y(T, P′) − y(T, P) ≤ B(1 + ε) − ε, (4)

B is a binary, (5)

all y are non-negative, (6)

where ε is a small positive number and B is a binary
variable: it is 1 if there exists a policy that satisfies the
preference and 0 otherwise. From Eqs. (2) and (3), it can be
seen that if there exists no such policy satisfying the pref-
erence, then VPS = 0; otherwise its value will be between
0 and 1 and is equal to y(T, P′). We enforce the probabili-
ties of the events and their difference to be between 0 and
1 using Eqs. (4) and (6). The second set of MIP constraints
is responsible for maintaining the consistency between the
supporting variable y(t, (s̃, s), a) and MDP elements d and
�. For all possible state pairs and for all time steps, we
have

∑

a∈A

y(0, (s̃, s), a) = d(s̃, s), (7)

∑

a∈A

y(t, (s̃′, s′), a)

=
∑

a∈A

∑

(s̃,s)∈S̃×S

�((s̃′, s′)|(s̃, s), a)y(t − 1, (s̃, s), a). (8)

Equation (7) ensures that the probabilities denoted by the
supporting variable y at time t = 0 are consistent with the
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distribution of initial state pair d. Equation (8) asserts that
the probability of getting to a state pair at time t is equal
to the sum of probabilities that other possible state pairs
take the specific action to reach the target state pair at time
t − 1. Taking these constraints into consideration, we for-
mulate the maximum-preference-satisfaction problem for
the preference formula {P} � {P′} as

max
B,y,VPS

VPS subject to Eqs. (2) − (8), (9)

where B, y, and VPS are the optimization variables and VPS
is the objective function. Equation (9) represents an MIP
problem because it includes an integer constraint [Eq. (5)];
otherwise it is a standard linear-programming problem.
Our main idea is to integrate RL and MIP to solve the
preferential cyber-defense problem for power grids.

C. Reinforcement-learning solution to the preferential
resource-allocation problem

Reinforcement learning is a decision-making tool,
where the “agent” explores the “environment,” interacts
with it, and collects observations to find an optimal behav-
ior in order to maximize a long-term “reward.” While
RL is capable of directly solving certain cyber-security
problems [28], here we exploit it to find the preferential
optimal resource allocation. In particular, suppose that, in
a power grid (e.g., the one shown in Fig. 1), the security
decision maker intends to distribute a number H of defen-
sive resources among L transmission lines. To prevent a
disastrous blackout, the defender must consider the poten-
tial attacker’s policy and the criticality of the transmission
lines along with the political and technical preferences.
From Fig. 4, it can be seen that the defender (agent) starts

RL agent:
Defender with 

preference

Initial allocation vector 
h = s

RL0
 = [0 0 ... 0]

{a
1
, a

2
, ..., a

11
}a

RLh¢ = s
RLt+1

 

{P¢} ≥ {P}

New transi�on func�ons 
based on the alloca�on 

and the a�acker's policy

New optimization 
problem

New 
policy

Action: adding resources
∈

Reward = 

Next state

MIP 
Problem

V
PS

FIG. 4. The proposed RL-based method to solve the prefer-
ential optimal resource-allocation problem. At each time step,
application of the epsilon greedy algorithm results in a new
choice of the action, a new MIP problem the solution of which
leads to the reward. One RL episode consists of a total of H time
steps.

with the initial allocation state h0 = [0, 0, . . . , 0], which
means that no resources have been assigned to any of
the transmission lines as of yet. At this step, an action
is selected and a single resource unit is assigned to the
respective transmission line. The next allocation state, h′,
can be determined based on the chosen action. We use
the epsilon greedy method [44] to select a proper action,
where the action with the largest Q value is chosen with
the probability of 1 − ε and a random action is performed
with the probability ε. Because the transition functions and
the attacker’s policy have changed in response to the new
allocation state h′, a new MIP problem needs to be formu-
lated and solved. The maximum-preference satisfaction,
the solution of Eq. (9), is taken as the reward of the cur-
rent time step. The agent will observe the reward of its
action and will “learn” from the acquired information. The
epsilon greedy algorithm gives a new choice of the action,
resulting in a new MIP problem, the solution of which will
lead to a reward. This process continues until a total of H
actions have been taken and the RL “episode” is regarded
as being over, initiating another episode. The whole pro-
cess stops when the agent’s learning objective has been
achieved. The optimal policy is thus a sequence of alloca-
tion actions, which represents the optimal solution of the
resource-allocation problem.

Depending on the setting of the environment, a wide
array of RL methods exists. In the setting of our resource-
allocation problem, both the state (the allocation state)
and action are discrete. While several RL methods are
available, such as the actor-critic (AC) method [45], the
policy-gradient (PG) method [46], and the proximal pol-
icy optimization (PPO) method [47], which are suitable for
our setting, we prefer deep Q learning as it is efficient for
power grids. In Q learning, the Q function is a mapping
of all possible state-action pairs to a scalar value and rep-
resents the expected total discounted reward that an agent
anticipates obtaining through starting from a determined
state and taking a specified action. The optimal Q function
can be defined as

Q∗(sRL, aRL) = r(sRL, aRL)

+ γ

N∑

s′RL=1

p(s′
RL|sRL, aRL)v(s′

RL, π), (10)

where s′
RL(or h′) is the next state evolving from state

sRL(or h), taking action aRL. In order to efficiently approx-
imate the Q function, we employ a deep RL method as a
replacement for the usual tabular Q learning. The approxi-
mator in deep Q learning is a multilayered neural network
[32]. For any given state sRL, the network outputs a vec-
tor of action values Q(sRL, ., .; θ), where θ denotes the set
of parameters of the online network. The target network
with the parameter set θ∗ is the same as the online net-
work except that for every c episode, its parameters are
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copied from the online network: θ∗
t = θt, which remains

unchanged during the c episodes. The target used in deep
Q learning can be described as

Q∗t = rt+1 + γ max
aRL

Qt(st+1
RL , aRL; θ∗t

). (11)

The agent receives the initial allocation and calculates
the Q-function values for all possible actions, which in
our problem are the transmission lines to which a single
resource unit is allocated. The allocation vector, action,
the next allocation vector derived from the stochastic
transition function, and the computed maximum value of
preference satisfaction (VPS) are stored. The data are then
sampled uniformly from the memory bank to update the
network—the so-called experience replay—as some ran-
dom batches of transitions are sampled. The error between
the target and predicted Q functions is calculated as

et = Q∗t − Qt(st+1
RL , aRL; θ t), (12)

where a small error signifies a well-trained algorithm.
Typically, a gradient-descent algorithm can be used to opti-
mize the online-network parameter values to minimize the
error. The parameters of the target network are updated
periodically to match those of the online network. Both
the target network and experience replay can dramatically
improve the performance of the algorithm [48]. Using the
Q function defined Eq. (10), we determine the optimal
resource-allocation for the power-grid security problem.

III. RESULTS

We solve the preferential resource-allocation problem in
the power-grid cyber-security setting for different types of
preferences. The simulations are carried out using the MAT-
LAB R2021b Reinforcement Learning Toolbox on a desk-
top PC with an Intel Core i7-6850K CPU and 128 GB of
RAM. We find that it is useful to employ an external opti-
mizer for more complex problems rather than the MATLAB
built-in solver. In this work, we use the GUROBI optimizer
[49], due to its advanced algorithms, cutting-edge heuris-
tics, and strong integer-feasibility checks, to solve the MIP
problem to improve speed over the regular MATLAB solver.
Specifically, the GUROBI branch-and-bound approach effi-
ciently searches for the global optimum, while its parallel-
processing capabilities utilize multicore processors effec-
tively. These advantages make GUROBI a powerful choice
for handling complex and large-scale MIP problems, offer-
ing significant speed improvements and a higher solution
quality compared to the MATLAB built-in solver.

The power-grid model is the benchmark W&W 6-bus
system shown in Fig. 1, with the assumption that the power
supply is provided by three generators. A generator is
out if all the transmission lines connected to it are in an
outage state. To simulate the power grid, we use a dc load-
flow simulator of cascading (separation) in power systems,

named DCSIMSEP [50,51], and we incorporate the power
grid into our preferential resource-allocation problem.

Transient effects and the growing share of renewables
on the dynamics of power grids are at the forefront of
issues in cyberphysical systems. It is important to consider
these effects and to address their potential implications
on the proposed preferential cyber-defense strategy, as
they can significantly affect the stability and reaction of
a power grid. A power grid, because of its intrinsic non-
linear dynamics, is susceptible to cascading failures. The
power-grid simulation framework DCSIMSEP used in our
work takes into account nonlinear dynamics and cascading
failures. In particular, the framework captures the complex
interdependencies in the power grid and cascading effects
that can arise during the propagation of failures [52]. In
addition, the framework accounts for the transient effects
and fluctuations (e.g., those induced by the growing share
of renewable) in an implicit manner. DCSIMSEP simulations
have allowed us to demonstrate the feasibility of incorpo-
rating preferential cyber-defense strategies into power-grid
systems with cascading dynamics.

In the simulations, we assume that an attack on a spe-
cific line is successful with a probability that depends on
the defender’s resource allocation, which is updated dur-
ing the learning process. If the attacker attacks line i, the
probability of an outage on that line will be [53]

p(i) = 1
1 + h(i)

, (13)

where h(i) is the ith component of the resource-allocation
vector h. The attacker constructs an “attack pool,” which
is a mixture of random and maximally secured lines, so
the attacker only attacks the lines belonging to the pre-
selected attack pool. The attack-pool length is taken to
be 3 (arbitrarily), so the maximal attack time is T = 2.
Initial state pairs d(s̃, s) follow the normal distribution,
with mean (0, 0) and standard deviation 2.5. Table II
lists the simulation-parameter values for the deep Q-
learning algorithm. The results from two examples of the

TABLE II. The deep Q-learning parameters.

Parameters Values

Episodes 100–2000
Episode steps H (available resource units)
Epsilon 0.5
Epsilon decay 0.001
Epsilon minimum 0.01
Learning rate 0.001
Disc. factor 1
Experience buffer length 10 000
Minibatch size 256
F.C. layer neurons 50

Disc., discount; F.C., fully connected.
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FIG. 5. An example of an MIP solution. The allocation vec-
tor is [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. The supporting variables y are
shown via a color map, VPS = 1, and B = 1. The color map
describes the attacker’s optimal policy (the defender’s worst
case), which maximizes preference satisfaction in the worst-case
scenario. The derived policy is stochastic, where the color map
indicates the probability of attack in each state pair of the power
grid at each time step. For example, at time t = 2, if the attacker
follows an optimal policy (the worst case for the defender), line
no. 5 will be attacked about 60% of the time while the system
is state pair (0, 2). Overall, at time t = 0, all lines are equally in
danger, whereas at times t = 1 and t = 2, lines nos. 1 and 5 are
those in most danger, respectively.

preferential resource-allocation problem are presented in
Figs. 5 and 6.

In the first case, there is only a single resource unit
available (H = 1) and the maximal attack time is T = 2.
The preference is set to be {0, 1, 2, 3, 4} � {5, 6, 7, 8}, as
shown in Fig. 3. The optimal allocation vector derived
from deep Q learning is h = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
indicating that the single unit should be allocated to line
no. 5. Figure 5 depicts the optimal attacker policy, which
is the solution of the corresponding MIP problem defined
in Eq. (9). There are three unique possible state pairs (s̃, s),
as in the state definitions of Example 1. For instance, from
Fig. 5, we see that it is optimal for the attacker to attack
line no. 1 rather than line no. 2 at time t = 1 when the
power grid is in the automaton state s̃ = 0 and MDP state
s = 2. It is also more effective to attack line no. 2 than
line no. 5 in the same situation. This optimal attacker
policy, which is the worst-case scenario for the defender,
satisfies the defender preference by 100% (VPS = 1). As a
result, the allocation vector h = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
derived from the deep Q-learning algorithm, is the optimal
preferential resource allocation for this problem for H = 1.

In the second case, ten resource units are available
(H = 10) and the preference is set to be {0, 1, 2, 3} �
{4, 5, 6, 7, 8}, as shown in Fig. 3. The application of deep
Q learning gives the optimal allocation vector based on

FIG. 6. An additional example illustrating the solu-
tion of an MIP problem. The allocation vector is
= [0, 0, 1, 0, 4, 0, 2, 3, 0, 0, 0]. The supporting variables y
are shown via a color map describing the attacker’s optimal
policy. The parameter values are VPS = 0.6057 and B = 1.
At time t = 1, if the attacker follows an optimal policy (the
worst-case scenario for the defender), line no. 8 will be attacked
about 35% of the time while the system is state pair (1, 2). For
this policy, at almost all times, line no. 8 is the most vulnerable.
However, the optimal allocation vector allocates more resources
to defending line no. 5 since this line is the most critical in
this system (see Ref. [28]), suggesting that the derived optimal
allocation is applicable even when the attacker does not follow
the optimal policy, since the algorithm also considers the
intrinsic dynamics of the power-grid system.

this preference as h = [0, 0, 1, 0, 4, 0, 2, 3, 0, 0, 0]. Figure 6
shows the optimal attacker policy, which is the solu-
tion of the MIP problem in Eq. (9). This time, there
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TABLE III. The optimal preferential resource-allocation results derived from the proposed deep Q-learning-based method.

Resources
H Preference Allocation vector h VPS

0 1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0.3192
0 2 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0.3192
0 3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0
1 2 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 1
2 2 [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0] 1
3 2 [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0] 1
4 1 [0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0] 1
7 3 [0, 0, 0, 0, 3, 0, 2, 2, 0, 0, 0] 0.5941
10 3 [0, 0, 1, 0, 4, 0, 2, 3, 0, 0, 0] 0.6057
20 3 [0, 0, 0, 0, 10, 0, 1, 9, 0, 0, 0] 0.6475

are 13 unique possible state pairs (s̃, s) (Example 1). For
instance, Fig. 6 indicates that it is optimal for the attacker
to attack line no. 8 rather than line no. 5 or line no.
7 at time t = 2 when the power grid is in the automa-
ton state s̃ = 7 and MDP state s = 3. Similar to the first
case, the optimal attacker policy, which is the worst-case
scenario for the defender, satisfies the defender prefer-
ence by 60.57% (VPS = 0.6057). Consequently, the allo-
cation vector h = [0, 0, 1, 0, 4, 0, 2, 3, 0, 0, 0] is the optimal
preferential resource allocation for this H = 10 case.

Table III summarizes the results for different preferences
and various amounts of available resource units. For clar-
ity of presentation, the preferences {6} � {0, 1, 2, 3, 4, 5},
{0, 1, 2, 3, 4} � {5, 6, 7, 8}, and {0, 1, 2, 3} � {4, 5, 6, 7, 8}
are denoted as preferences 1, 2, and 3, respectively.

While our results generate logical and consistent out-
comes achieved through the proposed framework, it would
be useful to compare our results with benchmarks. How-
ever, to our knowledge, there are no previous works in the
literature on resource allocation with preferences in cyber
defense for power grids, making a benchmark study infea-
sible at the present. Nonetheless, we have demonstrated the
effectiveness of our framework in satisfying preferences
and optimizing resource allocation.

Remark 1.—In our study, only the preference formulas
of length 1 have been considered. For preferences with
length more than 1, such as {P1} � {P2} � {P3}, further
modification to the MIP constraints is required. If the
transformation of longer-preference formulas to the logi-
cal combination (and/or) of length-1 formulas is feasible,
the same approach is applicable. Otherwise, the constraints
must be handcrafted according to the specific formulas.

Remark 2.—The number of the equality constraints of
the MIP optimization problem from Eqs. (7) and (8) is
equal to (T + 1) times the number of unique possible state
pairs. For example, in the second case, there are 13 unique
state pairs, so the number of equality constraints is 39. For
a more complex preference, a longer attack time, or a larger
power grid, this number will grow quickly, causing the
MIP problem to be computationally intractable. In fact, as

the constraints grow to the order of more than a couple of
hundred, MIP solutions may not be feasible. As practical
guidance, the MIP approach requires that the preferences
and consequently the state pairs be simple.

Remark 3.—Reinforcement-learning algorithms, like all
other learning methods (optimization algorithms in gen-
eral), are in some cases prone to the emergence of a
suboptimal solution. This can happen occasionally dur-
ing the simulations, yet a better training phase with tuned
learning parameters can often solve the problem, requir-
ing proper modifications of the reward function, the neural
network structure, and/or the learning parameters.

Remark 4.—To address the limitations of our current
framework with respect to the representation of the power-
grid dynamics and the effects of transients and renewable
fluctuations, a more advanced modeling approach would
be needed. In the present study, we have utilized the
DCSIMSEP package implemented on MATLAB, which cap-
tures interdependencies and cascading failures within the
power grid. To account for renewable fluctuations, an alter-
native simulation environment, such as that offered by
Grid2Op [54], an open-source PYTHON package specifi-
cally designed to facilitate the development and evaluation
of RL algorithms for power systems, would be needed.
More specifically, Grid2Op provides a simulation environ-
ment that models the operation of an electrical grid and
integrates with the OpenAI Gym interface, offering a wide
range of actions and rewards for training and testing RL
agents. The Grid2op framework enables renewables to be
incorporated into the power grid under a wider range of
scenarios, providing a platform to study both the transient
effects and fluctuations introduced by renewable energy
sources. It is possible that investigating the applicability
of Grid2Op for the preferential cyber defense of power
grids can provide insights into the interplay among grid
dynamics, stability, and cyber-defense strategies.

Remark 5.—While our results demonstrate the effective-
ness of the proposed framework in optimizing resource
allocation and satisfying specified preferences on the
benchmark W&W 6-bus power-grid network, scaling up
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to large systems remains a significant challenge. In par-
ticular, utilizing MIP in the preference-satisfaction for-
mulation and incorporating the MIP problem into the RL
training process are computationally complex. Alternative
mathematical formulations and optimization techniques
should be explored to address this challenge. In addition,
advancements in RL algorithms, such as sample-efficient
algorithms or approaches that leverage distributed com-
puting, could help alleviate the training burden associated
with incorporating the MIP problem. We hope that our
present work can serve as a starting point toward develop-
ing a preferential cyber-defense framework for large power
grids.

IV. DISCUSSION AND CONCLUSIONS

In an ideal world where an infinite number of resources
are available to protect a cyberphysical system, full secu-
rity against cyberattacks can be guaranteed. In the real
world, the resources that can be deployed to protect a
power grid are limited, so it is practically impossible to
protect all components, including each and every trans-
mission line, especially when the system is large. To
develop practical and effective cyber-defense strategies,
preferences must be taken into account to offer the max-
imally possible protection of the power grid. The consid-
erations used to determine certain preferences vary and
often depend on a variety of technological, financial, and
even political factors. To our knowledge, prior to our work,
there has been little work that has addressed the problem
of developing defense strategies for power grids against
cyberattacks by allocating optimal resources according to
specific preferences.

A necessary step in solving the problem of preferential
optimal resource allocation for power grids is to iden-
tify a mathematical tool to quantify the preferences. Our
approach is to exploit automata theory to transform an
everyday-language preference into an MIP problem. We
then develop an RL-based framework to solve the pref-
erential cyber-defense problem, where MIP is employed
as the system dynamics for the RL-based framework to
generate the optimal resource allocation to best protect
the power grid under the preference constraint. Utilizing
the benchmark W&W 6-bus power-grid network, we have
validated our preferential machine-learning framework to
maximally defend the system against attacks using limited
resources.

We have carried out new simulations to address the
impact of fluctuations induced by renewables on the power
grid. In general, introducing renewable sources into a
power grid will lead to a new set of challenges for grid
management due to their inherent intermittency and vari-
ability. In our simulations, we first establish a fixed alloca-
tion of resources for the power grid under consideration
and then employ a determined preference. The inherent

variability of renewable energy generation, driven by fac-
tors such as weather patterns and diurnal cycles, results
in fluctuations in the power output. Our goal is to under-
stand how these fluctuations affect the transition func-
tion, denoted as �((s̃′, s′)|(s̃, s), a), which characterizes the
probability of transition from one state to another, given
specific actions. We model the fluctuations as random
perturbations added to the probabilities, leading to recon-
structing the MIP and finding a new solution for preference
satisfaction. Through this model, we are able to recon-
struct the MIP formulation and find a novel solution that
accounts for preference satisfaction in the presence of fluc-
tuations induced by renewables. Our analysis indicates that
the impact of these random fluctuations in the power grid
is analogous to the effect of changing resource allocations
in the MIP equations. This intriguing discovery suggests
that the same temporal-language MIP strategy, previously
applied to conventional power grids, can be seamlessly
deployed in power grids incorporating renewables. As a
result, the same temporal-language MIP strategy could be
deployed to power grids that include renewables. Details of
the simulation setting, results, and analysis are presented in
Appendix B.

To make our framework meaningful for real-world prob-
lems, one shortcoming must be overcome. In particular,
when the preferences are complex and the power grid is
large, the number of MIP constraints tends to grow expo-
nentially. At present, no effective methods exist for solving
large-scale MIP problems. To develop methods to reduce
the number of MIP constraints without violating the pref-
erence constraints and without deviating from the original
solution is key to making our MIP and/or machine-learning
cyber-defense framework realistic.

While methodologies incorporating preferences as tem-
poral logic have been explored in other research fields
such as robotics, our study presents a unique contribution
by formulating temporal logic for preferences specifically
for the resource-allocation problem in the cybersecurity
of power grids. This distinction arises from the complex
nature of power grids as cyberphysical systems and the
specific challenges associated with defending them against
cyberattacks. By integrating LTL preference specifications
with RL, our framework provides a novel approach to
addressing the optimization of resource allocation under
limited resources for power-grid cybersecurity. By lever-
aging domain-specific insights and modeling the dynamics
of power grids, our methodology offers a tailored solution
that addresses some of the specific cybersecurity concerns
of power grids. Through experiments on a benchmark
power-grid network, we have demonstrated the potential
impact of our framework in enhancing the resilience of
power grids against cyber threats.

In principle, a multiagent adversarial-game framework
represents a more comprehensive approach to model-
ing the adaptiveness of both the attacker and defender.
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We focus on the defender’s adaptiveness under limited
resources, so as to prioritize the defender’s adaptiveness
so that it becomes feasible to develop a framework that
allows the defender to dynamically adjust its defense strat-
egy in response to changing circumstances and evolving
cyber threats. This approach is particularly important in
scenarios where the defenders have limited resources and
need to efficiently allocate those resources to counter vari-
ous attack strategies. The main contribution of our work is
a quantitative machine-learning framework to address the
practical challenge of resource allocation and the prioriti-
zation of the defender’s actions in an evolving cyber-threat
landscape.

Taken together, to overcome the limitations of our cur-
rent framework to address the effects of transient and
renewable fluctuations, the integration of dynamic model-
ing tools simulating power-grid dynamics under transient
conditions is necessary. A possible approach is to lever-
age advanced simulation techniques, such as time-domain
simulations or agent-based models, so that the complex
dynamics and interdependencies within the power grid
can be captured. Factors such as load balancing, voltage
stability, and system response to disturbances can then
be studied, providing a more accurate representation of
the dynamical behavior of the power grid. Additionally,
incorporating data-driven approaches and real-time moni-
toring can help better capture the fluctuations introduced
by renewable energy sources. Integrating the dynamic
modeling techniques and data-driven approaches into the
framework can lead to a more comprehensive and realistic
approach to preferential cyber defense for power grids.

ACKNOWLEDGMENTS

This work was supported by the U.S.-Israel Energy
Center managed by the Israel-U.S. Binational Industrial
Research and Development (BIRD) Foundation. This work
was also supported by the Air Force Office of Scientific
Research (AFOSR) under Grant No. FA9550-21-1-0438.

APPENDIX A: FORMULATION OF
MIXED-INTEGER PROGRAMMING THROUGH A

CONCRETE EXAMPLE

We use a concrete example (denoted as Example 3) to
illustrate the implementation of the MIP formulation of
optimization. The specific finite automaton is illustrated in
Fig. 7. The setting is as follows:

(i) Preference:

p := (P′ =){1} � (P =){2}
(ii) Maximum attack time: T = 3

(iii) MDP states:

S = {[1, 1] := 0, [1, 0] := 1, [0, 1] := 2, [0, 0] := 3}

FIG. 7. The automaton of Example 3. There are four states,
with no. 0 being the starting state and no. 3 being the final state.
The preference p := {1} � {2} stipulates that ending in state no.
1 is preferred to ending in state no. 2. Table V shows that, using
the derived policy, 76.89% of the time the system will end in
state no. 1 compared with ending in state no. 2, which takes place
0.48% of the time, indicating that the preference is optimally
satisfied.

(iv) Automaton states: S̃ = {0, 1, 2, 3}
(v) Actions: A = {A, B}

(vi) Initial state-pair probability distribution:

d(s̃, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.9 if (s̃, s) = (0, 0)

0.05 if (s̃, s) = (1, 1)

0.05 if (s̃, s) = (2, 2)

0, else

(vii) State-pair–transition probability distribution:

�((1, 1)|(0, 0), A) = 0.8

�((2, 2)|(0, 0), A) = 0.1

�((3, 3)|(0, 0), A) = 0.05

�((0, 0)|(0, 0), A) = 0.05

�((1, 1)|(0, 0), B) = 0.1

�((2, 2)|(0, 0), B) = 0.8

�((3, 3)|(0, 0), B) = 0.05

�((0, 0)|(0, 0), B) = 0.05

�((0, 0)|(1, 1), A) = 0.05

�((1, 1)|(1, 1), A) = 0.95

�((3, 3)|(1, 1), B) = 1

�((3, 3)|(2, 2), A) = 1

�((0, 0)|(2, 2), B) = 0.05

�((2, 2)|(2, 2), B) = 0.95

�((3, 3)|(3, 3), A) = 1

�((3, 3)|(3, 3), B) = 1

As discussed in Sec. II, the supporting variable
y(t, (s̃, s), a) is defined as the probability of visiting the
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TABLE IV. The definition of the supporting variables
y(t, (s̃, s), a).

t (s̃, s) A B

0 (0,0) y1 y2
0 (1,1) y3 y4
0 (2,2) y5 y6
0 (3,3) y7 y8
1 (0,0) y9 y10
1 (1,1) y11 y12
1 (2,2) y13 y14
1 (3,3) y15 y16
2 (0,0) y17 y18
2 (1,1) y19 y20
2 (2,2) y21 y22
2 (3,3) y23 y24
3 (0,0) y25 y26
3 (1,1) y27 y28
3 (2,2) y29 y30
3 (3,3) y31 y32

state pair (s̃, s) at time t and taking action a. We use the
variables listed in Table IV with the purpose of keeping
the equations concise. For example, y11 is the probability
of being in the state pair (1, 1) at time t = 1 under action
A. With these definitions and the initial state-pair prob-
ability distribution (d(s̃, s)), we construct the following
constraints from Eq. (7):

y1 + y2 = 0.9, (A1)

y3 + y4 = 0.05, (A2)

y5 + y6 = 0.05, (A3)

y7 + y8 = 0. (A4)

Moreover, using the state-pair transition probability dis-
tribution defined above [�((s̃′, s′)|(s̃, s), a)], we obtain the
following constraints from Eq. (8):

y9 + y10 = 0.05y1 + 0.05y2 + 0.05y6 + 0.05y3, (A5)

y11 + y12 = 0.8y1 + 0.1y2 + 0.95y3, (A6)

y13 + y14 = 0.1y1 + 0.8y2 + 0.95y6, (A7)

y15 + y16 = 0.05y1 + 0.05y2 + y4 + y5 + y7 + y8, (A8)

y17 + y18 = 0.05y9 + 0.05y10 + 0.05y14 + 0.05y11, (A9)

y19 + y20 = 0.8y9 + 0.1y10 + 0.95y11, (A10)

y21 + y22 = 0.1y9 + 0.8y10 + 0.95y14, (A11)

y23 + y24 = 0.05y9 + 0.05y10 + y12 + y13 + y15 + y16,
(A12)

y25 + y26 = 0.05y17 + 0.0518 + 0.0522 + 0.05y19, (A13)

y27 + y28 = 0.8y17 + 0.1y18 + 0.95y19, (A14)

y29 + y30 = 0.1y17 + 0.8y18 + 0.95y22, (A15)

y31 + y32 = 0.05y17 + 0.05y18 + y20 + y21 + y23 + y24.
(A16)

The following relations are useful:

y(T, P) = y29 + y30,

y(T, P′) = y27 + y28.

Equations (2)–(6) then lead to the following constraints:

0 ≤ VPS ≤ B, (A17)

B − 1 ≤ VPS − y27 − y28 ≤ 0, (A18)

B(1 + ε) + 1 ≤ y27 + y28 − y29 − y30 ≤ B(1 + ε) − ε,
(A19)

B is a binary, (A20)

all y are non-negative. (A21)

The standard form of the MIP optimization problem for
this example is

max
B,y,VPS

VPS subject to Eqs. (A1)–(A21).

Using the GUROBI optimizer MIP solver, we obtain the
solution to this optimization problem as VPS = 0.7689,
B = 1, with the values of the y parameters listed in
Table V. This solution describes the best possible way
to satisfy the preference p := {1} � {2}. Following this
policy for each state pair at each time step, it can be
ensured that 76.89% of the time the preference will be sat-
isfied—the highest satisfaction possible for this problem.

TABLE V. The solution for the MIP problem of Example 3:
VPS = 0.7689 and B = 1.

t (s̃, s) A B

0 (0,0) y1 = 0.9 y2 = 0
0 (1,1) y3 = 0.05 y4 = 0
0 (2,2) y5 = 0 y6 = 0.05
0 (3,3) y7 = 0 y8 = 0
1 (0,0) y9 = 0.05 y10 = 0
1 (1,1) y11 = 0.7675 y12 = 0
1 (2,2) y13 = 0 y14 = 0.1375
1 (3,3) y15 = 0 y16 = 0.0450
2 (0,0) y17 = 0.0478 y18 = 0
2 (1,1) y19 = 0.7691 y20 = 0
2 (2,2) y21 = 0.1356 y22 = 0
2 (3,3) y23 = 0 y24 = 0.0475
3 (0,0) y25 = 0 y26 = 0.0408
3 (1,1) y27 = 0 y28 = 0.7689
3 (2,2) y29 = 0 y30 = 0.0048
3 (3,3) y31 = 0 y32 = 0.1855
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Note that, at each RL time step, based on the attacker’s
policy and the defender’s resource allocation, a new MIP
problem is constructed and solved in order to find the
optimal resource allocation.

APPENDIX B: EFFECTS OF FLUCTUATIONS
INDUCED BY RENEWABLES ON PREFERENTIAL

DEFENSE OF POWER GRIDS

Recent years have witnessed increasing integration of
renewable energy sources, such as solar, wind, and hydro-
electric power, into power grids worldwide, in efforts
to reduce greenhouse-gas emissions and combat climate
change. From the point of view of grid management, the
incorporation of the renewable sources into a power grid
introduces a new set of challenges due to their inher-
ent intermittency and variability. It is thus important to
study the effects of fluctuations induced by renewables on
the power-grid dynamics. In the context of preferential
defense here, we focus on elucidating the specifics of these
fluctuations and their influence on the temporal-language
MIP strategy for preference satisfaction.

In general, for a fixed allocation of resources for the
power grid under consideration under certain preference,
the inherent variability of renewable energy generation,
driven by factors such as weather patterns and diur-
nal cycles, will result in fluctuations in power output.
Our goal is to understand, given specific actions, how
these fluctuations affect the transition function, denoted
as �((s̃′, s′)|(s̃, s), a), which characterizes the probability
of transitioning from one state to another. To effectively
model the fluctuations in the power grid, we use random
perturbations by treating these fluctuations as probabilis-
tic deviations from the expected values. This probabilistic
framework has allowed us to incorporate the inherent
uncertainty associated with renewable energy sources and
better mimic real-world scenarios. An illustrative exam-
ple of the new transition function affected by the added
perturbations for the automaton of Example 3 is

�((1, 1)|(0, 0), A) = 0.7,

�((2, 2)|(0, 0), A) = 0.2,

�((3, 3)|(0, 0), A) = 0.15,

�((0, 0)|(0, 0), A) = 0.05,

�((1, 1)|(0, 0), B) = 0.2,

�((2, 2)|(0, 0), B) = 0.7,

�((3, 3)|(0, 0), B) = 0.08,

�((0, 0)|(0, 0), B) = 0.02,

�((0, 0)|(1, 1), A) = 0.15,

�((1, 1)|(1, 1), A) = 0.85,

�((3, 3)|(1, 1), B) = 1,

TABLE VI. The solution for the extended problem of Example
3: VPS = 0.6177 and B = 1.

t (s̃, s) A B

0 (0,0) y1 = 0.9 y2 = 0
0 (1,1) y3 = 0.05 y4 = 0
0 (2,2) y5 = 0 y6 = 0.05
0 (3,3) y7 = 0 y8 = 0
1 (0,0) y9 = 0.06 y10 = 0
1 (1,1) y11 = 0.6725 y12 = 0
1 (2,2) y13 = 0 y14 = 0.2225
1 (3,3) y15 = 0 y16 = 0.1350
2 (0,0) y17 = 0.1373 y18 = 0
2 (1,1) y19 = 0.6136 y20 = 0
2 (2,2) y21 = 0 y22 = 0.2011
2 (3,3) y23 = 0 y24 = 0.1440
3 (0,0) y25 = 0 y26 = 0.1291
3 (1,1) y27 = 0 y28 = 0.6177
3 (2,2) y29 = 0 y30 = 0.1984
3 (3,3) y31 = 0 y32 = 0.1646

�((3, 3)|(2, 2), A) = 1,

�((0, 0)|(2, 2), B) = 0.15,

�((2, 2)|(2, 2), B) = 0.85,

�((3, 3)|(3, 3), A) = 1,

�((3, 3)|(3, 3), B) = 1.

Based on the transition function, we reconstruct the MIP
formulation to find the new solution that accounts for
preference satisfaction in the presence of fluctuating per-
turbations, as displayed in Table VI.

Our analysis indicates that the impact of the random
fluctuations on the power-grid dynamics is analogous to
the effect of changing resource allocations in the MIP equa-
tions. This suggests that the same temporal-language MIP
strategy, previously applied to conventional power grids,
can be seamlessly deployed in power grids incorporating
renewables.
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